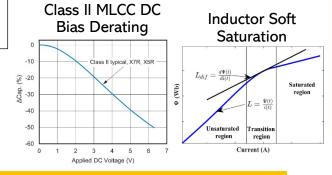
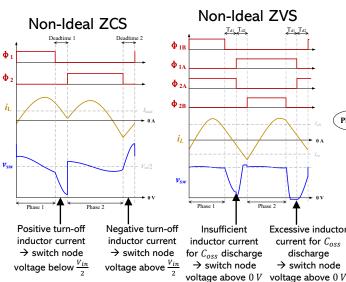
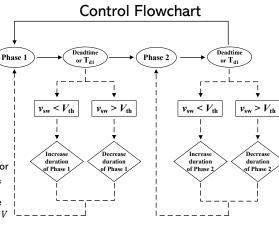
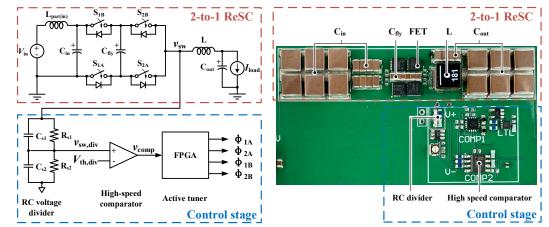

Autotuning of Resonant Switched-Capacitor Converters for Soft Switching Operation



Berkeley Power and Energy Center


Motivation and Application


Due to finite terminal filtering capacitances, the efficiency of ReSC converters is often maximized when they are precisely soft switched [4]. However, circuit non idealities render ZCS and ZVS timing challenging to estimate creating the need for active control techniques.


Theory and Control

By sensing the switch node voltage, nonideal soft switching conditions can be detected. Complete ZCS or ZVS can then be achieved by implementing the proposed control scheme.

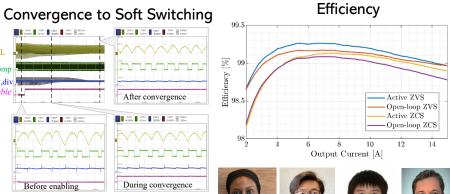
Hardware

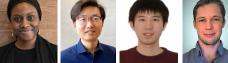
The presented 2-to-1 converter is the foundational ReSC topology. The control technique is verified on a 48-V-to-24-V hardware prototype and can be extended to higher conversion ratio topologies.

Experimental Verification

Convergence to complete soft switching can be achieved from a wide range of initial switching frequencies.

 Active ZVS and ZCS control allow for higher peak efficiencies than the conventional openloop techniques.


References


[1] H. Sambo, Y. Zhu, T. Ge, N. Ellis, and R. Pilawa-Podgurski, "Autotuning of Resonant Switched-Capacitor Converters for Zero Current Switching and Terminal Capacitance Reduction." APEC 2023.

Before enab

[2] H. Sambo, Y. Zhu, and R. Pilawa-Podgurski, "Autotuning of Resonant Switched-Capacitor Converters for Zero Voltage Switching," COMPEL 2023.

[3] T. Ge. Z. Ye, and R. Pilawa-Podgurski, "Geometrical State-Plane Analysis of Resonant Switched-Capacitor Converters: Demonstration on the Cascaded Multiresonant Converter," TPEL 2023. [4] Y. Zhu, Z. Ye, T. Ge and R. Pilawa-Podgurski, "Multi-Resonant Compensation Control for Terminal Capacitance Reduction in Resonant Switched-Capacitor Converters," COMPEL 2021

Students: Haifah Sambo, Yicheng Zhu yczhu@berkeley.edu; Post-docs: Ting Ge, gting@berkeley.edu Nathan Miles Ellis nathanmilesellis@herkel