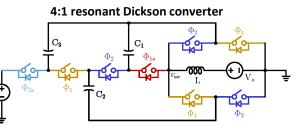
Active Soft-Charging Control for Hybrid and Resonant Switched-Capacitor Converters

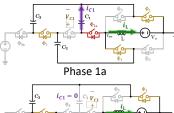

Berkeley Power and Energy Center

Motivation and Application

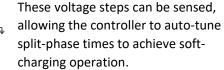
Dickson-derived converters are increasingly used for both fixed-ratio and direct-to-PoL applications in the datacenter and transportation space. They can achieve very low switch stress (i.e. Volt Amp product), which means that lower-voltage (and therefore less lossy) switches can be used compared to other topologies for a given output power.

Split-Phase Control

Certain Dickson topologies require more complex split-phase control schemes [1] in order to achieve full soft-charging of all fly capacitors. Split-phase control timings can be complex to calculate and vary depending on component tolerance, circuit non-idealities, and operating condition, necessitating active control [2], [3].

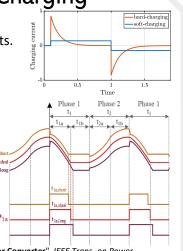


The conventional two-phase operation is split into phases {1a, 1b} and {2a,2b}

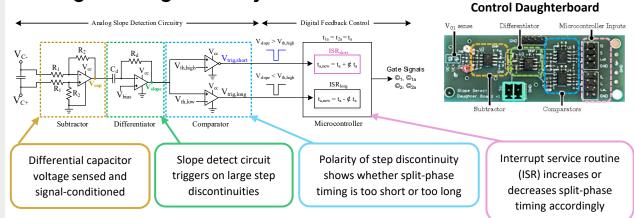

Capacitor Losses: Hard-Charging vs. Soft-Charging

Hard-charging: large charge redistribution loss, spiky currents. **Soft charging:** no charge redistribution loss, smooth / resonant currents.

Phase 1 Split-Phase Operation


If the {1a,1b} and {2a,2b} transitions occur at the wrong time, hard-charging occurs, resulting in current spikes and discontinuous capacitor voltages.

Phase 1b


References

[1] Y. Lei et al., "Split-Phase Control: Achieving Complete Soft-Charging Operation of a Dickson Switched-Capacitor Converter", IEEE Trans. on Power Electronics, vol. 31, no. 1, pp. 770-782, 2015. [2] R. A. Abramson et al., "An Active Split-Phase Control Technique for Hybrid Switched-Capacitor Converters Using Capacitor Voltage Discontinuity Detection," 2023 IEEE 24th Workshop on Control and Modeling for Power Electronics (COMPEL), Ann Arbor, MI, USA, 2023. [3] N. M. Ellis, H. Sambo and C. N. Robert Pilawa-Podgurski, "Closed-Loop Split-Phase Control Applied to the Symmetric Dual Inductor Hybrid (SDIH) Converter," 2023 IEEE 24th Workshop on Control and Modeling for Power Electronics (COMPEL), Ann Arbor, MI, USA, 2023.

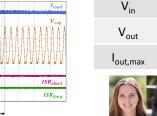
Short t.

Analog Sensing Circuitry

• The analog circuitry is flexible in implementation, and stages can be combined into single package op-amps or off-loaded into internal microcontroller comparator units to increase density.

Experimental Verification

8:1 Dickson Converter



Parameter

• An 8-to-1 resonant Dickson converter was used for validation. • The control scheme was able to converge on soft-charging splitphase timing when 1) initialized in a hard charging-condition, and

2) when enabled during load step transients. Steady-State Convergence

Operating Conditions

48 V

6 V

10 A

Smooth capacitor voltages signify soft-charging operation

Rose Abramson, Sahana Krishnan, Maggie Blackwell Email: {rose abramson, sahana krishnan, blackwell}@berkeley.edu