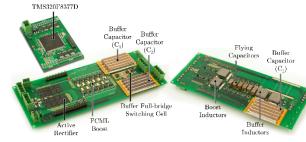

High Performance Single-phase Ac-dc Conversion with Advanced Topology and Control

Berkeley Power and **Energy Center**

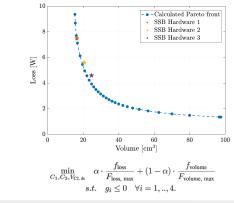

Motivation and Application



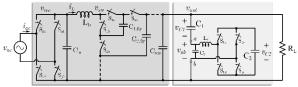
- 90-240 Vac to 400 Vdc is a critical conversion stage for applications such as data center power delivery, electric vehicle charging, etc.
- Ac-dc power factor correction Reduce boost inductor size
- Twice-line frequency power ripple ٠ buffering

Reduce buffer capacitor size

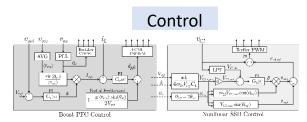
Hardware Implementation



- Single DSP TMS320F28377D for the proposed system control
- GaN System and EPC GaN FETs used in FCML and SSB for high efficiency

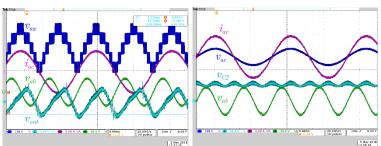

Multi-objective optimization for SSB^[2]

Loss-volume Pareto front of SSB generated with numerical optimization method



Challenges and Solutions

- The boost inductor size is reduced flying capacitor multilevel (FCML) topology
- An active buffer topology seriesstacked buffer (SSB) is implemented to reduce the buffer capacitor for twice-line frequency power ripple buffering


PFC+SSB Coupled Control:

٠

- **PFC Multi-loop control**: high-bandwidth "inner" current & low-bandwidth "outer" voltage loop
- PFC Partial feedforward cancels the input voltage disturbances to input current caused by smaller boost inductor in FCML
- Buffer control obtains phase and amplitude information from PFC

Experimental Verification

Total box-volume power density:	230 W/in ³
Peak efficiency:	98.9%
1.5 kW efficiency:	98.1%
THD:	< 5%
Power factor:	> 0.994

- Experimental waveforms demonstrating power factor correction, multi-level switching, and SSB @ 1.5 kW, 240 Vac to 400 Vdc

References:

[1] Z. Liao. N. C. Brooks, and R. C. N. Pilawa-Podgurski, "A high power density power factor correction converter with a multilevel boost front-end and a series-stacked energy decoupling buffer," in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018

[2] Z. Liao, et al. "Multi-objective optimization of series-stacked energy decoupling buffers in single-phase converters," in 2018 IEEE19th Workshop on Control and Modeling for Power Electronics (COMPEL), July 2018, pp. 1–7. Student: Zitao Liao. Email: zliao5@berkeley.edu

