High Efficiency High Power Density Hybrid/Resonant Switched-Capacitor Converter

Theoretical Analysis

- Systematically analyze and calculate switch and passive utilization
- Compare and select the most suitable topology depending on application and power level
- Develop control technique to achieve soft-charging and soft-switching

Capacitor voltage balancing

Cascaded Resonant Converter

Two-phase interleaved design

• Overcome the intermediate decoupling challenge of doubler topology

 Operate the tank in the inductive region to achieve ZVS, while improving tolerance of component variations

Practical Challenges and Solutions

Floating gate drive

- Improved bootstrap and charge pump techniques to replace isolated dc/dc power supplies
 - Achieving higher efficiency, lower cost and smaller footprint
 - Working on system level circuit integration to further reduce size and cost

688889

Even-level FCML converter has better natural balancing

Gate drive voltage and signal mismatch can cause imbalance

Experimental Verification

References:

 Z. Ye, Y. Lei, W. Liu, P. S. Shenoy and R. C. N. Pilawa-Podgurski, "Design and implementation of a low-cost and compact floating gate drive power circuit for GaN-based flying capacitor multi-level converters," *APEC 2017* Z. Ye, Y. Lei, Z. Liao and R. C. N. Pilawa-Podgurski, "Investigation of capacitor voltage balancing in practical implementations of flying capacitor multilevel converters", *COMPEL 2017*

[3] Z. Ye, Y. Lei and R. C. N. Pilawa-Podgurski, "A resonant switched capacitor based 4-to-1 bus converter achieving 2180 W/in3 power density and 98.9% peak efficiency," *APEC 2018*

Student: Zichao Ye. Email: yezichao@berkeley.edu

