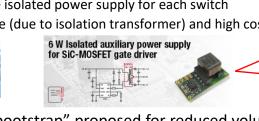
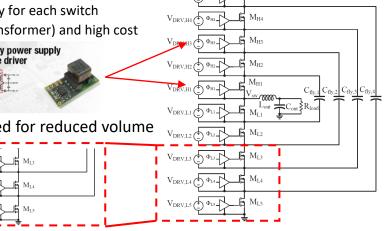
## Advanced Techniques for Driving Floating Switches in the Flying Capacitor Multi-level converter




#### Berkeley Power and **Energy Center**

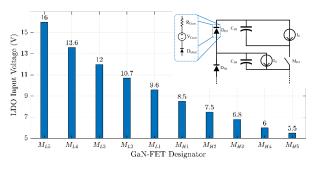
### Motivation and Application


Floating switches need floating power supplies

- Typically use isolated power supply for each switch
- Large volume (due to isolation transformer) and high cost






"Cascaded bootstrap" proposed for reduced volume and cost

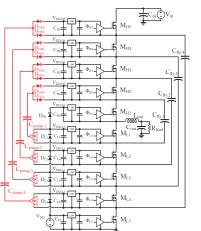


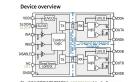
### Challenges with Bootstrap Solution and Innovations

Voltage drops in bootstrap diodes require supply significantly higher than gate-drive voltage

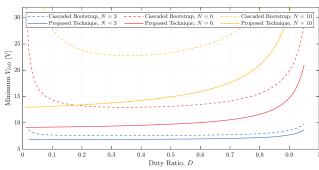
• Local regulation necessary for driving GaN-FETs at 5-6V




Replace bootstrap diodes with FETs


Reduced voltage drop, bidirectional power delivery

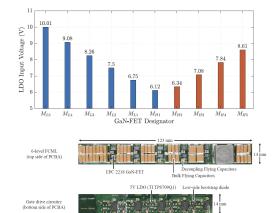
Synchronous Bootstrapping


# **Charge-Pump Technique**

Oscillator driven charge pump: can be easily integrated with existing isolated drivers

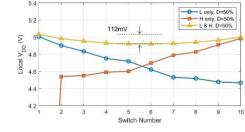









Can operate at low duty ratios with reduced gate-drive supply • Higher gate drive efficiency


## **Experimental Verification**

Reduced gate-drive supply with high-side switches fed by charge-pump



Synchronous bootstrapping:

power delivery from high and low-sides



References [1]Z. Ye, et al., "Improved Bootstrap Methods for Powering Floating Gate Drivers of Flying Capacito Multilevel Converters and Hybrid Switched-Capacitor Converters," in IEEE Transactions on Power Electronics

[2] R. K. Iyer, N. M. Ellis, Z. Ye and R. C. N. Pilawa-Podgurski, "A High-Efficiency Charge-Pump Gate Drive Power Delivery Technique for Flying Capacitor Multi-Level Converters with Wide Operating Range," 2021 IEEE Energy Conversion Congress and Exposition (ECCE).

[3] N. M. Ellis, R. Iyer and R. C. N. Pilawa-Podgurski, "A Synchronous Boot-strapping Technique with Increased On-time and Improved Efficiency for High-side Gate-drive Power Delivery," 2021 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)

> Rahul Iver: rkiver@berkeley.edu, Nathan Ellis nathanmilesellis@berkeley.edu