# Enabling Buck-Type AC/DC Grid-Tied Rectifiers Using Flying Capacitor Multi-Level Converters with Advanced Control



## Motivation and Application

Data center power consumption 1%+ of global electricity demand and growing [1]



### Single-stage rectification

- Increased efficiency
- Greater power density

#### Hardware





TI C2000 DSP (F28379D)

- 12-level prototype reconfigured as 5-level converter
- Flying capacitor voltages measured with non-isolated instrumentation amplifier

## FCML and Active Flying Capacitor Voltage Balancing

6-Level Buck-Type FCML PFC Rectifier

- Reduced magnetics volume
- High FOM switches





# **Experimental Verification**





Drain-Source Voltages



#### **Power Factor**

Target 0.97
Passive Balancing 0.88

**Active Balancing** 

- Switch voltage stress limited  $\rightarrow$  low voltage switches  $\boxed{\hspace{1cm}}$
- High power factor input current achieved 🗹

#### References:

0.97+

[1] N. Jones, "The Information Factories," Nature 2018

Rod Bayliss III Email: rodbay@berkeley.edu